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Testing for general dynamical stationarity with a symbolic data compression technique

Matthew B. Kennel
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We construct a hypothesis test for examining thestationarity of the evolution law for a time series of
discrete symbols: whether two data streams appear to originate from the same underlying, but unknown,
dynamical system. Based on techniques from the theory of data compression, our method intelligently accounts
for the substantial serial correlation and nonlinearity found in realistic dynamical data. We demonstrate the
method on a number of realistic experimental datasets.

PACS number~s!: 05.45.Tp, 05.10.2a
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Symbolic methods have been used in the study of
namical systems from the earliest days, most notably K
mogorov and Sinai’s@1# use of metric entropy as a dynam
cal invariant, which spawned a significant mathemati
industry in symbolic dynamics. Fraser@2# applied informa-
tion theoretical concepts to construct useful algorithms
criteria for time-delay embeddings.

Stationarity, the notion that the dynamical law describi
the system does not change over long timescales, is a
requisite for the vast majority of nonlinear data analysis te
niques. Only recently have hypothesis tests suitable for r
istic chaotic and nonlinear dynamical data been proposed@4#.
In this contribution we advocate a symbolic approach t
exploits well-studied and powerful techniques of data co
pression, infrequently applied in the physics literature@3#, in
order to justify the statistical assumptions in a deeply pr
cipled way.

We have a stream of symbols, either quantized fr
continuous-valued observations or directly measur
s1 ,s2 ,s3 , . . . ,sN , each symbol from some alphabetA reex-
pressed as integerssP$1,2, . . . ,uAu%. The distribution of
multisymbol words provides information about tim
dependent structure and correlation, just as, with continu
nonlinear data, time-delay embedding provides a vec
space revealing dynamical information. We emphasize
for our method, the symbolic encoding need not be craf
intelligently or with regard to eludicating topological prop
erties, as, for instance, is typically done in theoretical sy
bolic dynamics studies when the equations of motion
known. In our tests, symbolization is merely a radical d
cretization or reduction in precision of the original da
which typically are observed at a much higher digital pre
sion. For example, we divide the observed one-dimensio
histogram to a small number of bins, either by equal pr
ability mass or by equal width, and then code each datum
the bin number. Naturally, any reasonable preproces
strategy deemed suitable for the particular data set, e.g.

*Permanent address: Centre for Applied Dynamics and Optim
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trending or symbolizing points projected on an illuminatin
Poincare´ cut instead of at arbitrary time intervals, will onl
improve the security of the results.

A first attempt at a stationarity test might be to apply t
classicalx2 test to observed counts of distinct multisymb
words observed in, say, the front and back halves of the d
Unfortunately, the assumption underlying this test—th
each datum is randomly andindependentlydrawn from some
distribution—is not true in realistic dynamical data. Sho
time correlations in physical data strongly couple symb
near in time; thus naive application of such tests fails mis
ably. Indeed, arbitrary dynamical dependence makes it d
cult to construct a proper statistical null test for any hypo
esis that allows chaotic or general nonlinear data in the
class, and to our knowledge, few examples of this sort ex

This work proposes a test procedure that quanti
whether two observed symbol streams have ‘‘the same
namics,’’ even in the presence of serial correlation and
pendence. There are two phases to the algorithm: cons
tion of a symbolic predictive model, and the evaluation o
combination of classical statistics, this time on data co
structed to be nearly independent. The algorithm is com
tationally rapid and does not require Monte Carlo simulatio

One traditional definition@5# of a stationary stochastic
source is that the joint probability distribution of multisym
bol words of random variablesX is invariant to global shifts
in time:

p~Xi ,Xi 21 , . . . ,Xi 2k!

5p~Xi 1N ,Xi 211N , . . . ,Xi 2k1N!,;N,k. ~1!

The technology we employ does not enable us to easily
swer that question, but a slightly different one regarding
time invariance of the predictive conditional distribution, i.e

p~Xi uXi 21 , . . . ,Xi 2k!

5p~Xi 1NuXi 211N , . . . ,Xi 2k1N!,;N,k. ~2!

Physically, this is asking whether the evolution law chang
over time. Typically that would occur with slow changes
underlying physical parameters~‘‘drift’’ ! as opposed to the
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sort of nonstationarity ascribed to Brownian motion pr
cesses or Le´vy flights, i.e., long-memory processes. Given
time series with substantial autocorrelation even at very l
lags, one might consider applying the test to a differen
version of the observed series to see whether or not the
served data will arise from the integral of a time-invaria
process.

Fundamental results of information theory@6,5# require
that optimally compressed output data approach indep
dence. This is the central theoretical justification for our s
sequent application of classical statistical inference, and
feel, the most useful concept outside the specific applica
presented here. The strategy is to perform the modeling s
of a modern symbolic data compression algorithm, but
stead of subsequently emitting a compressed binary stre
we examine the statistics observed in the model to disc
stationarity.

Our symbolic dynamical model is a ‘‘context tree:’’ a
shown in Fig. 1, the recent symbols in the stream themse
define the state, known here as thecontext; contexts are
analogous to the states reconstructed by time-delay em
ding in conventional nonlinear dynamical analysis. We d
scribe elsewhere@7# other applications to nonlinear dynamic
but in the present paper we specialize in stationarity test

The tree structure accumulates the statistics of obse
symbol vectors down to some maximum depthd, with dis-
tinct branches corresponding to distinct symbols of alpha
A which occurred at prior times. The top node correspond
no history, the first uAu nodes correspond to a one
dimensional reconstruction of the most recent symbol, th
uAu2 descendents to a two-dimensional reconstruction of
two most recent symbols, and so forth. Naturally one o
constructs the nonempty nodes. Each node storesuAu integers
that record the occurencescj of every symbol that occurred
immediately after its particular contextC, which provides an
estimate of the conditional probability of seeing the vario
symbols after the current contextP̂(st11uC). Following the
data compression literature, we use the Krichevsky-Trofim
@10# estimator,

P̂~k!5~ck11/2!Y (
i

~ci11/2!

FIG. 1. Example of a small context tree for a three sym
alphabet. Internal nodes~nodes with deeper children! are the root
node,A, C, and AC, and terminal nodes,AA, BA, CA, B, BC,
CC. Descendents ofAC continue off the figure. Each node acc
mulates counts of future symbols and two internal code length
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for a symbol with value 1<k<uAu. Given a particular his-
tory, we have an estimator of the conditional probabilities
the symbols that have followed that history.

More than one node matches the current history. For
ample, in a three letter alphabet, if the four most recen
emitted symbols arebcaa, matching nodes have contextsa,
aa, caa, and bcaa in addition to the zero-history~root!
node l, which always matches by definition. The critic
issue is balancing between the more detailed dynamica
construction possible in deeper contexts, and the increa
quantity of observations at shallower contexts, which giv
greater robustness against statistical fluctuation.

EstimatingP̂ at fixed depth contexts, independent of sym
bol history, is a fixed-order Markov model, which is a po
performer in general. Our algorithm selects a single node
use based on a sequential minimum description length c
rion @8# selecting those nodes that in the past have enco
their particular future symbols using few bits. In a conte
tree, the number of past symbols that contribute to predic
the future is not uniform. Some past histories need to
deeply examined because there, long-past symbols influe
the future significantly, whereas for other past histories, th
is less need, either because future evolution is more un
dictable or there has been little information previously o
served regarding those histories. In this respect, contexts
like ‘‘variable embeddings’’@11#.

At time t we attempt to code symbols(t11), using the
prior symbolss(t). The algorithm has four phases, whic
must be performed in this order: selection of the special
coding node, creation of new child nodes, update of lo
code lengths, and the increment of the conditional counts
addition to this set of countsck , each node accumulates tw
additional internal code lengths,Ls andLp , Ls representing
the cumulative cost to encode symbols whose conte
matched the current node, employing the current nod
counts, ck, Lp representing the code length encoding t
same data but estimating the future using theck in the parent
node. A sequential data compressor must not use any in
mation whatsoever about the identity ofs(t11) to choose a
probability estimate to encode it, otherwise, a causal dec
pressor is impossible. In our application, it would mean t
the code length cost representing the complexity of
model would not be properly included, and we would
susceptible to spurious overfitting. Batch encoders for t
sources also exist and could be applied to our problem,
those require explicit penalty terms for the model complex
that we have found to be difficult to analyze consistently

At each time step, we traverse the nodes that match
current context from the root node down. If the tree is as F
1, and the recently seen symbols areABBBC (C being the
most recent!, the nodes in the tree that match the curre
context are the root node~matches everything!, C and BC.
The current noden is the ‘‘encoding node’’ for the next
symbol ~in the example, coming afterC) if it is a terminal
node~i.e., if it has no deeper children whatsoever!, or barring
that, if

(
c

Lp~c!<(
c

Ls~c!, ~3!

with c summing over all extant children ofn. Otherwise, one
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descends one level deeper to the matching child and rep
~A blank node is created here if necessary.! The notion is that
we wish to find nodes at the level where, heretofore,
current counts better predicted~via a smaller code length! the
future vs descending to a deeper level.

If we were literally compressing the data, we now fe
the best predictive estimate of the next symbolP̂ ~estimated
using the current encoding node!, and additionally the actua
symbol s(t11) to a standard algorithm called an ‘‘arith
metic coder’’ that emits compressed bits. The decompre
sequentially reconstructs the same estimator by an iden
tree method, and given the compressed bits, the invers
the arithmetic coder reproduces the actual symbols(t11).
This final stage is not relevant for our present needs, but
mention it here to show the relationship between on-l
modeling of the symbolic dynamics and data compressio

We now add new blank nodes to the tree if necessar
match the current context of symbols as deeply as poss
Then, for all matching nodes, including possibly newly c
ated blank nodes, the local quantitiesLs and Lp are incre-
mented by2 log2P̂@s(t11)#, using the node’s own count
for Ls and the parents’ counts forLp . The parent of the roo
node is defined to always have a uniform distributionP̂
51/uAu. Finally, at all matching nodes, the appropriate cou
ck , corresponding to the value ofs(t11), is incremented by
one.

After encoding all the symbols using the combined set
carry out the stationarity test. Answering the question,
two data sets appear to arise from the same underlying
namical system, translates to combining hypothesis tests
formed at each encoding node regarding whether the di
bution of future symbols actually encoded—whether fro
the first set or the second—could have come from a sin
underlying probability distribution, and if any apparent d
ference is statistically significant. At encoding contexts,
may use standard tests because these events ought
nearly independent using a good compression algorithm

Every node records the frequency with which symbok
was encoded there,ek;1 in the first set andek;2 in the second.
~Note thatekÞck , the latter accumulating frequencies whe
ever a context was excited.! Assuming independence, th
statistic

x25 (
k51

uAu
~R1/2ek;12R21/2ek;2!2

ek;11ek;2
~4!

with R5(ek;2 /(ek;1 follows the standardx2 distribution
with uAu21 degrees of freedom under the null hypothe
that both empirical probability distributions came from t
same underlying distribution@12#. Given the value ofx2 and
the degrees of freedom, standard numerical algorithms
vide a likelihoodL asymptotically uniformLP(0,1) under
the null. Small values ofL reject the null at the given sig
nificance level, e.g.,Ł,0.01.

It is known that the analytic approximation used for t
asymptotic distribution of thex2 statistic becomes increas
ingly inaccurate as the number of observations decrea
Thus for (ek,75 ~a somewhat arbitrary cutoff! we switch
over to a combinatorial test for differences in proportion
called Fisher’s exact test. The calculations for this test ar
ts.
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easy only in the 232 case. We coalesce bins by keeping t
observation for the most frequent symbol@bin m which
achieves max(em;11em;2)# and merging the others into
eo;1 ,eo;2, resulting in four quantities conventionally ex
pressed in a ‘‘contingency table,’’ with cumulative row an
column sums:

em;1 eo;1 n1

em;2 eo;2 n2

nm no N

Under the null that the difference in proportions betweenm
and o counts is independent of being in set 1 and 2,
probability for seeing any particular table with the give
marginal sums is

pT5nm!no!n1!n2!/ ~em;1!em;2!eo;1!eo;2!N! !.

One directly enumerates all tables with the given obser
marginals~only a one-degree of freedom for a 232 table!
and sumspT for every table with a difference in proportion
at least as great as that observed@13#, resulting in a likeli-
hoodL for accepting the null hypothesis at this node.

We combine theseM likelihoods, each measuring som
aspect of of the same null hypothesis, into a single ove
test. Under the null, the quantity

X25 (
k51

M

~22lnLk! ~5!

is x2 distributed with 2M degrees of freedom, from which
we compute our finalL, again uniform in (0,1) under the
null. Especially small values ofL imply a small likelihood
that this level of difference would have been observed h
the two symbol datasets been generated by the same u
lying dynamical process. This completes our desired test p
cedure.

We first test the accuracy of the statistic under the n
We produced an ensemble of 1000 time series from thx
coordinate of the ‘‘Lorenz 84’’ attractor: a tiny geophysic
model with attractor dimensiond'2.5 @14#. This system is
higher dimensional and more complex~see Fig. 2! than the
traditional Lorenz dataset, and is thus a somewhat m
stringent test. Figure 3 shows the distribution ofL compar-
ing the first and second halves of each set, demonstratinL
is close to uniformP(0,1). This is a stringent requiremen
and shows the success of our independence assumption
is difficult to get a high-quality null distribution with com
plicated, arbitrarily correlated, chaotic data in the null cla
With this number of data, the test is also quite powerful.

We demonstrate discrimination power with a set of pr
sure data from an experimental model of a ‘‘fluidized b
reactor’’ @15#. This experimental system consists of a vertic
cylindrical tube of granular particles excited from below b
an externally input gaseous flow. In some regimes~‘‘slug-
ging’’ !, the particles exhibit a combination of collective low
dimensional bulk dynamics and small-scale hig
dimensional turbulence of the individual particles@15#. The
observed variable was an azimuthally averaged pressure
ference between two vertically separated taps. Figure
shows portions of time-delay embedding of orbit sections
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FIG. 2. Sample orbit of Lorenz dynamical system in reconstructed state space.
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the dataset taken at the same experimental parameters
one when the flow was boosted by 5%. The change in
attractor is rather subtle and difficult to reliably diagnose
eye. Figure 5 showsL on a data set whose flow was in
creased at the midpoint. As the alphabet size increased
the hypothesized breakpoint approached the true valu
50%, the strength of the rejection increased,L→0. Even the
binary alphabet case showed a significant rejection of
null. On data taken in stationary conditionsL fluctuates ran-
domly in (0,1), as expected. We performed the same sta
tical test, with qualitatively identical results, on an expe
mental system whose flow rate was ramped slowly by
same amount. Even with this sort of data, the greatest re
tion tends to occur in the middle of the dataset because
statistical discrimination power is greatest when there
equal numbers in the two sets considered in the test. We
qualitatively identical results on a dataset whose flow w
adiabatically boosted by the same degree during the
This is not surprising, even though the test assumes a
crete breakpoint in order to lump the symbols into one cl
or another, as even given a smooth change, front and b
sets will have different characteristics, and the ability to d
tect this ~strongest rejection! will peak with approximately
equal quantity of data in each set. Using a breakpoint tes
smoothly changing dynamics might result in a small loss
statistical power compared to an ideal test, but in our ex
rience with the proposed method on experimental datase
at least a thousand points, adequate power to detect p
cally significant nonstationarity is rarely a concern with th
method in our experience.

The southern oscillation index~SOI!, the normalized pres
sure difference between Tahiti and Darwin, is a proxy for
El Niño southern oscillation, as ocean temperature influen
atmospheric dynamics. The period from mid 1990 to 19
exhibited an anomalously sustained period of El Nin˜o-like
conditions ~Fig. 6!, perhaps indicative of global climat
change. One statistical analysis@16# found such an anomaly
quite unlikely assuming stationarity, but another group@17#
used a different analysis and found it significantly mo
likely to be a chance fluctuation. Both papers used traditio
linear forecasting models, with the difference cente
and
e
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around an autocorrelation based correction for serial corr
tion to arbitrarily reduce the degrees of freedom. We appl
our algorithm to the three-month moving average SOI~bi-
nary symbolized! testing the 5.4-yr period in question again
the rest of the series~starting from 1900!, with a resulting
L'0.01, meaning that one would expect to see a region
anomalous by chance every 540 yrs. The result is close
that of @17# than @16# but we certainly do not want to tak
any particular position regarding climate; rather, we wish
point out an application for our method where correcting
serial correlation automatically is useful.

We point out that the proposed method is not exclusiv
limited to testing or finding a single breakpoint—all that
needed is a sensible,a priori hypothesized division of the
dataset into discrete multiple classes. For instance, one m
want to test for the presence of cyclostationarity, that
dynamics are externally modulated at some slow freque
V. In this case, one could choose elements of set 1 and s
depending on whether sin(Vt1u) is positive or negative,

FIG. 3. Quantile-quantile plot ofL under the null hypothesis
The observed values ofL are sorted and plotted vs their normalize
index (i 11)/1001. Asymptotically the curve should approach t
diagonal under the null. Bars are6 two standard deviations for 100
samples of 1000 uniform deviatesP@0,1# processed similarly.
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FIG. 4. Phase space plots of the differential pressure signal from a fluidized bed reactor. Three are from the same paramet
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given fixedV andu. Here the hypothesis is that the dynam
ics are significantly different when trying to predict symbo
on one part of the cycle compared to the other. Test
against three or more classes would require an upgrade o
x2 or Fisher test of proportions procedures; there exist c
ventional methods in the statistical literature.

Recent work has successfully used a distance in the s
bolic space to fit unknown parameters of a physically mo
vated continuous model to observed data, including subs
tial observational and dynamic noise all in one framework
challenge for traditional regression. Tanget al. @18# first pro-
posed minimizing over free parameters the difference
tween an observed distribution of symbol words and t
produced by discretizing some proposed model’s outp

FIG. 5. Nonstationary fluidized bed results with air flow alter
at the 50% mark. Plotted statisticL as a function of hypothesize
breakpoint in time series and symbolic alphabet precision. Res
for uAu.2 numerically underflowed toL50 toward the center and
are not plotted. Null hypothesis emphatically rejected due to
very small values ofL.
g
he
-

-
-
n-
a

-
t
t.

Daw et al. @19# successfully employed this technique to
experimental internal combustion engine measurements
low-dimensional model. The optimization target was a E
clidean norm in@18# and ax2 distance in@19#. Due serial
correlation, a true hypothesis test confirming the appar
compatibility of observed data to a well-fitting model wa
not possible in those works. We feel our current meth
could provide a lessad hocoptimization goal, e.g., maximiz
ing averageL or minimizing the code length of the physica
model’s output, encoded using the symbolic model learn
from the observed data.

We conclude by reminding the reader that stationarity i
property of themodel deemed useful for the dataset. As
result, any test for stationarity or time-invariance depends

lts

e

FIG. 6. Three month moving average of the southern oscillat
index, the normalized pressure difference between Tahiti and D
win, Australia. Strongly negative values correspond to El Ni˜o
events. It is debated whether the extended negative period from
1990 through 1995 is especially anomalous.
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the appropriateness of the hypothesized model applied to
data. In our case, the symbolic methods are closely related
universal data compression algorithms@20#. The perfor-
mance on finite-length sequences will, of course, depend
a good representation such that the predictabilility of th
future symbol is best determined by the first context symbo
next best by the second context symbol, etc. If the meth
has to descend many symbols to find a useful predicti
context, power will be lost. Because the predictive cod
length is a ‘‘fair’’ minimum description length measure, one
can optimize over reconstruction parameters~e.g., time delay
or symbolization breakpoints! to find the lowest code length,
at which point the maximum serial dependence has be
he
to

n
e
l,
d
g

n

learned by the context. Note that altering the alphabet
symbolization parameters will change the no-memory e
tropy as well, thus the compression ratio of compressed b
per symbol vs no-memory bits per symbol is the optimiza
tion target.

If one is interested in the stationarity of some narro
aspects or of exclusively rare events in the data, our sort
general compression model might not be appropriate a
could give misleading results or low statistical power. I
simulation and experiment, however, the present method
useful and sensitive to many sorts of parametric drift
change.

We thank members of INLS and CADO for discussion
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