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Testing for general dynamical stationarity with a symbolic data compression technique
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We construct a hypothesis test for examining #tationarity of the evolution law for a time series of
discrete symbols: whether two data streams appear to originate from the same underlying, but unknown,
dynamical system. Based on techniques from the theory of data compression, our method intelligently accounts
for the substantial serial correlation and nonlinearity found in realistic dynamical data. We demonstrate the
method on a number of realistic experimental datasets.
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Symbolic methods have been used in the study of dytrending or symbolizing points projected on an illuminating
namical systems from the earliest days, most notably KolPoincarecut instead of at arbitrary time intervals, will only
mogorov and Sinai'§1] use of metric entropy as a dynami- improve the security of the results.
cal invariant, which spawned a significant mathematical A first attempt at a stationarity test might be to apply the
industry in symbolic dynamics. Frasg?] applied informa- classicaly? test to observed counts of distinct multisymbol
tion theoretical concepts to construct useful algorithms andvords observed in, say, the front and back halves of the data.
criteria for time-delay embeddings. Unfortunately, the assumption underlying this test—that

Stationarity, the notion that the dynamical law describingéach datum is randomly amddependentlglirawn from some
the system does not change over long timescales, is a préistribution—is not true in realistic dynamical data. Short
requisite for the vast majority of nonlinear data analysis techtime correlations in physical data strongly couple symbols
niques. Only recently have hypothesis tests suitable for reaR€ar in time; thus naive application of such tests fails miser-
istic chaotic and nonlinear dynamical data been proppged ably. Indeed, arbitrary dynamical dependence makes it diffi-
In this contribution we advocate a symbolic approach thafult to construct a proper statistical null test for any hypoth-
exploits well-studied and powerful techniques of data com-£sis that allows chaotic or general nonlinear data in the null
pression, infrequently applied in the physics literafi8k in class, and to our knowledge, few examples of this sort exist.
order to justify the statistical assumptions in a deeply prin- This work proposes a test procedure that quantifies
cipled way. whether two observed symbol streams have “the same dy-

We have a stream of symbols, either quantized fromnamics,” even in the presence of serial correlation and de-
continuous-valued observations or directly measuredpendence. There are two phases to the algorithm: construc-
S$1,55,S3, . . . Sy, each symbol from some alphabkteex-  tion of a symbolic predictive model, and the evaluation of a
pressed as integerse{1,2,...]A|}. The distribution of ~combination of classical statistics, this time on data con-
multisymbol words provides information about time- structed to be nearly independent. The algorithm is compu-
dependent structure and correlation, just as, with continuouitionally rapid and does not require Monte Carlo simulation.
nonlinear data, time-delay embedding provides a vector One traditional definition5] of a stationary stochastic
space revealing dynamical information. We emphasize thagource is that the joint probability distribution of multisym-
for our method, the symbolic encoding need not be craftedol words of random variablex is invariant to global shifts
intelligently or with regard to eludicating topological prop- In time:
erties, as, for instance, is typically done in theoretical sym-
bolic dynamics studies when the equations of motion are PO Xi—gy - Xi—k)
known. In our tests, symbolization is merely a radical dis- _
cretization or reduction in precision of the original data, =PXien Xicgens - Xicieen) YNk (D)

which typically are observed at a much higher digital preci- he technology we employ does not enable us to easily an-
sion. For example, we divide the observed one-dimension

histogram to a small number of bins, either by equal prob- wer that question, but a slightly different one regarding the

. X time invariance of the predictive conditional distribution, i.e.,
ability mass or by equal width, and then code each datum by P

the bin number. Naturally, any reasonable preprocessing POX|X; X 1)
strategy deemed suitable for the particular data set, e.g., de- HAL ek

=pXi N Xic1ens - Xicken), YNK (2
*Permanent address: Centre for Applied Dynamics and OptimizaPhysically, this is asking whether the evolution law changes
tion, The University of Western Australia, Nedlands, Perth 6907,0ver time. Typically that would occur with slow changes in
Western Australia. underlying physical paramete(&drift” ) as opposed to the
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[m no history for a symbol with value ¥£k<|A|. Given a particular his-
tory, we have an estimator of the conditional probabilities of
the symbols that have followed that history.

(A @ c 1 step history More than one node matches the current history. For ex-
ample, in a three letter alphabet, if the four most recently
emitted symbols arbcaa, matching nodes have contexts

aa, caa, and bcaa in addition to the zero-historyroot)
node N, which always matches by definition. The critical
(aa ) (Ba] (ca AC (ec]) (cc]) 2stephistory issue is balancing between the more detailed dynamical re-

construction possible in deeper contexts, and the increased
quantity of observations at shallower contexts, which gives
greater robustness against statistical fluctuation.

EstimatingP at fixed depth contexts, independent of sym-
bol history, is a fixed-order Markov model, which is a poor
performer in general. Our algorithm selects a single node to
use based on a sequential minimum description length crite-
rion [8] selecting those nodes that in the past have encoded
their particular future symbols using few bits. In a context

sort of nonstationarity ascribed to Brownian motion pro—tree' the number of past symbols that contribute to predicting

cesses or Ley flights, i.e., long-memory processes. Given athe future is not uniform. Some past histories need to be
time series with substantial autocorrelation even at very |On§eeply exaf“'”.e.d because there, long-past Symbdsf influence
lags, one might consider applying the test to a difference he future S|gn|f|cantly, whereas for other pgstmstorles, there
version of the observed series to see whether or not the ol less need, either because' futulre evoIqUon IS more unpre-
served data will arise from the integral of a time-invariantdlCtabIe or the_:re has bee_:n I|t_tle mforr_natlon previously ob-
process, s_,erv‘(‘ed rggardlng thos_e hIS'tOI’IeS. In this respect, contexts are
Fundamental results of information thedr§,5] require like Va”able embeddings'{11]. :
that optimally compressed output data approach indepen- .At time t we attempt to co_de symbe(t+1), using the_:
dence. This is the central theoretical justification for our subPror symbolss(t). The glgorlthm has four phases, Wh'Ch
sequent application of classical statistical inference, and wiust be performedlln this order. §elect|on of the special en-
feel, the most useful concept outside the specific applicatioﬁOdlng hode, creat|on'of new child nodes, 'u'pdate of local
presented here. The strategy is to perform the modeling sta (’ng_lengths,. and the increment of the conditional counts. In
of a modern symbolic data compression algorithm, but in- dd!t!on to'th|s set of counts;, each node accumulates two
stead of subsequently emitting a compressed binary strear%dd't'onal internal code lengthks andL,,, L representing

we examine the statistics observed in the model to discerl'® cumulative cost to encode sy_mbols whose contex,ts
matched the current node, employing the current node’s

stationarity. . .
y counts, ¢y, L, representing the code length encoding the

Our symbolic dynamical model is a “context tree:” as data b imating the f . o th
shown in Fig. 1, the recent symbols in the stream themselved2Me data but estimating the future usingdpe the parent

define the state, known here as thentext contexts are node. A sequential data compressor must not use any infor-

analogous to the states reconstructed by time-delay embemaﬂon_v_vhatsqever about the |(_1ent|w$(1t_+1) to choose a
ding in conventional nonlinear dynamical analysis. We depr()b"’lb'l',w.(ESt'W""rFe to encode it, 9thgrvwsp, a causal decom-
scribe elsewherg7] other applications to nonlinear dynamics phressogls ||mp0f15|ble. In our appI_|cat|ohn, It WOU||d meanfthr?t
but in the present paper we specialize in stationarity testing‘a‘edcl0 € (Iadngt %OSI reprelse_ntlr:gdtde codmp exity (I)d Le
The tree structure accumulates the statistics of observe@d€! would not be properly included, and we would be
symbol vectors down to some maximum depthwith dis- susceptible to spurious overfitting. B_atch encoders for tree
tinct branches corresponding to distinct symbols of alphabefOUces also exist and could be applied to our problem, but

A which occurred at prior times. The top node corresponds t ose require explicit penalt_y terms for the model qomplexity
no history, the first|A| nodes correspond to a one- that we have found to be difficult to analyze consistently.

dimensional reconstruction of the most recent symbol, their At each time step, we traverse the nodes that match the

|A|? descendents to a two-dimensional reconstruction of th urrent context from the root node down. If the tree is as Fig.
two most recent symbols, and so forth. Naturally one onlyl @nd the recently seen symbols &BBBC (C being the

constructs the nonempty nodes. Each node stéeistegers most recent the nodes in the tree that r_natch the current
that record the occurences of every symbol that occurred context are the root nod(en‘fitches_everythlr?,gc andBC.
The current noden is the “encoding node” for the next

immediately after its particular conte®, which provides an bol (in th | . fta®) if it | inal
estimate of the conditional probability of seeing the various>YMPO (in the example, coming aftef) if it is a termina

- . node(i.e., if it has no deeper children whatsoeyer barrin
symbols after the current conteR(s,,,|C). Following the that Ef P v g
data compression literature, we use the Krichevsky-Trofimov '

[10] estimator,

FIG. 1. Example of a small context tree for a three symbol
alphabet. Internal noddsodes with deeper childrgrare the root
node, A, C, andAC, and terminal nodesAA, BA, CA, B, BC,
CC. Descendents oAC continue off the figure. Each node accu-
mulates counts of future symbols and two internal code lengths.

2 Lp<c>s§ L«(c), &)
I5(k)=(ck+1/2)/ > (ci+1/2)

with ¢ summing over all extant children of Otherwise, one
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descends one level deeper to the matching child and repeatsasy only in the X2 case. We coalesce bins by keeping the

(A blank node is created here if necesspihe notion is that  observation for the most frequent symbddin m which

we wish to find nodes at the level where, heretofore, theachieves max(,;+e.,)] and merging the others into

current counts better predictéda a smaller code lengththe e, ,e,,, resulting in four quantities conventionally ex-

future vs descending to a deeper level. pressed in a “contingency table,” with cumulative row and
If we were literally compressing the data, we now feedcolumn sums:

the best predictive estimate of the next symBalestimated
using the current encoding nggdand additionally the actual €m1 | o1
symbol s(t+1) to a standard algorithm called an “arith- €m2 | €02 | N2
metic coder” that emits compressed bits. The decompressor
sequentially reconstructs the same estimator by an identical

tree method, and given the compressed bits, the inverse @fnder the null that the difference in proportions between
the arithmetic coder reproduces the actual sym#ol-1).  and o counts is independent of being in set 1 and 2, the

This final stage is not relevant for our present needs, but Wgrobability for seeing any particular table with the given
mention it here to show the relationship between on-linemarginal sums is

modeling of the symbolic dynamics and data compression.

We now add new blank nodes to the tree if necessary to Pr=nNm!Ng!Nnyt/(en.1lemaleq 1! en ! N).
match the current context of symbols as deeply as possible.
Then, for all matching nodes, including possibly newly cre-One directly enumerates all tables with the given observed
ated blank nodes, the local quantities and L, are incre- ~ marginals(only a one-degree of freedom for a<2 tablg
mented by— Iogzl5[s(t+1)], using the node’s own counts and sum®+ for every table with a difference in proportions

for L, and the parents’ counts fdr, . The parent of the root at least as great as that obsery&8d], resulting in a likeli-
S . P . .~ hoodL for accepting the null hypothesis at this node.
node is defined to always have a uniform distributiBn

— 1Al Finall I hi q h . We combine thes#/ likelihoods, each measuring some
=1/A|. Fina y,_at all matching nodes, t_e_approprlate Countaspect of of the same null hypothesis, into a single overall
Cy, corresponding to the value sft+ 1), is incremented by

test. Under the null, the quantity

ng

N, | Nng | N

one.
After encoding all the symbols using the combined set we M

carry out the stationarity test. Answering the question, do X2=> (—2InL,) (5)

two data sets appear to arise from the same underlying dy- k=1

namical system, translates to combining hypothesis tests per- , . . .
formed at each encoding node regarding whether the distriS X~ distributed with M degrees of freedom, from which
bution of future symbols actually encoded—whether fromW€ compute our final’, again uniform in (0,1) under the

the first set or the second—could have come from a singl@Ull- Especially small values of imply a small likelihood
underlying probability distribution, and if any apparent dif- that this level of difference would have been observed had

ference is statistically significant. At encoding contexts, wel€ two symbol datasets been generated by the same under-

may use standard tests because these events ought to Iing dynamical process. This completes our desired test pro-
nearly independent using a good compression algorithm. cedure.. o

Every node records the frequency with which symkol We first test the accuracy of the statistic under the null.
was encoded therey., in the first set an@ in the second. Ve produced ﬁn ensemble of 1000 time series frohm>¢he|
(Note thate, # ¢, , the latter accumulating frequencies when- co0rdinate of the “Lorenz 84" attractor: a tiny geophysica

ever a context was excitddAssuming independence, the model with attractor dimensiod~ 2.5 [14]. This system is
statistic higher dimensional and more complésee Fig. 2 than the

traditional Lorenz dataset, and is thus a somewhat more

stringent test. Figure 3 shows the distributiondtompar-
(4)  ing the first and second halves of each set, demonstrating
k=1 €1 €2 is close to uniforme (0,1). This is a stringent requirement

and shows the success of our independence assumption, as it

with R=Xey.,/Sey, follows the standardy® distribution s difficult to get a high-quality null distribution with com-
with |A|—1 degrees of freedom under the null hypothesisplicated, arbitrarily correlated, chaotic data in the null class.
that both empirical probability distributions came from the With this number of data, the test is also quite powerful.
same underlying distributiof12]. Given the value of? and We demonstrate discrimination power with a set of pres-
the degrees of freedom, standard numerical algorithms prasure data from an experimental model of a “fluidized bed
vide a likelihoodL asymptotically uniformL e (0,1) under reactor”’[15]. This experimental system consists of a vertical
the null. Small values oL reject the null at the given sig- cylindrical tube of granular particles excited from below by
nificance level, e.g4.<0.01. an externally input gaseous flow. In some reginfedug-

It is known that the analytic approximation used for theging”), the particles exhibit a combination of collective low-
asymptotic distribution of thee? statistic becomes increas- dimensional bulk dynamics and small-scale high-
ingly inaccurate as the number of observations decreasedimensional turbulence of the individual particlgs]. The
Thus for Ze, <75 (a somewhat arbitrary cutofive switch  observed variable was an azimuthally averaged pressure dif-
over to a combinatorial test for differences in proportions,ference between two vertically separated taps. Figure 4
called Fisher’'s exact testThe calculations for this test are shows portions of time-delay embedding of orbit sections of

A _
X2=| | (RY%,.; — R~ %, ,)?
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X(t+1.6)

2 25" 1 X(t+0.8)
x(t)

FIG. 2. Sample orbit of Lorenz dynamical system in reconstructed state space.

the dataset taken at the same experimental parameters, ameund an autocorrelation based correction for serial correla-
one when the flow was boosted by 5%. The change in th&on to arbitrarily reduce the degrees of freedom. We applied
attractor is rather subtle and difficult to reliably diagnose byour algorithm to the three-month moving average kM

eye. Figure 5 showg on a data set whose flow was in- nary symbolizegltesting the 5.4-yr period in question against
creased at the midpoint. As the alphabet size increased aride rest of the seriegstarting from 1900 with a resulting

the hypothesized breakpoint approached the true value af~0.01, meaning that one would expect to see a region this
50%, the strength of the rejection increaséd; 0. Even the anomalous by chance every 540 yrs. The result is closer to
binary alphabet case showed a significant rejection of théhat of [17] than[16] but we certainly do not want to take
null. On data taken in stationary conditiofsfluctuates ran- any particular position regarding climate; rather, we wish to
domly in (0,1), as expected. We performed the same statigoint out an application for our method where correcting for
tical test, with qualitatively identical results, on an experi- serial correlation automatically is useful.

mental system whose flow rate was ramped slowly by the We point out that the proposed method is not exclusively
same amount. Even with this sort of data, the greatest rejedimited to testing or finding a single breakpoint—all that is
tion tends to occur in the middle of the dataset because theeeded is a sensible, priori hypothesized division of the
statistical discrimination power is greatest when there arelataset into discrete multiple classes. For instance, one might
equal numbers in the two sets considered in the test. We sawant to test for the presence of cyclostationarity, that the
qualitatively identical results on a dataset whose flow waslynamics are externally modulated at some slow frequency
adiabatically boosted by the same degree during the rurf). In this case, one could choose elements of set 1 and set 2
This is not surprising, even though the test assumes a dislepending on whether sifit+ 6) is positive or negative,
crete breakpoint in order to lump the symbols into one class

or another, as even given a smooth change, front and back 1T
sets will have different characteristics, and the ability to de-
tect this (strongest rejectionwill peak with approximately
equal quantity of data in each set. Using a breakpoint test on
smoothly changing dynamics might result in a small loss of
statistical power compared to an ideal test, but in our expe-
rience with the proposed method on experimental datasets of
at least a thousand points, adequate power to detect physi-
cally significant nonstationarity is rarely a concern with this
method in our experience.

The southern oscillation indg8Ol), the normalized pres-
sure difference between Tahiti and Darwin, is a proxy for the
El Nino southern oscillation, as ocean temperature influences
atmospheric dynamics. The period from mid 1990 to 1995 0 . . . . .
exhibited an anomalously sustained period of ET dNiike 0 0.2 04 06 0.8 1
conditions (Fig. 6), perhaps indicative of global climate index
change. One statistical analy$i5] found such an anomaly  FG. 3. Quantile-quantile plot of under the null hypothesis.
quite unlikely assuming stationarity, but another groli]  The observed values df are sorted and plotted vs their normalized
used a different analysis and found it significantly moreindex (i +1)/1001. Asymptotically the curve should approach the
likely to be a chance fluctuation. Both papers used traditionadliagonal under the null. Bars are two standard deviations for 100
linear forecasting models, with the difference centeredsamples of 1000 uniform deviates[0,1] processed similarly.
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FIG. 4. Phase space plots of the differential pressure signal from a fluidized bed reactor. Three are from the same parameters, one is
different.

given fixedQ) and 6. Here the hypothesis is that the dynam- Daw et al. [19] successfully employed this technique to fit
ics are significantly different when trying to predict symbols experimental internal combustion engine measurements to a
on one part of the cycle compared to the other. Testindow-dimensional model. The optimization target was a Eu-
against three or more classes would require an upgrade of tdidean norm in[18] and ay? distance in[19]. Due serial
x? or Fisher test of proportions procedures; there exist coneorrelation, a true hypothesis test confirming the apparent
ventional methods in the statistical literature. compatibility of observed data to a well-fitting model was
Recent work has successfully used a distance in the symmot possible in those works. We feel our current method
bolic space to fit unknown parameters of a physically moti-could provide a lesad hocoptimization goal, e.g., maximiz-
vated continuous model to observed data, including substamng averagel or minimizing the code length of the physical
tial observational and dynamic noise all in one framework, anodel’s output, encoded using the symbolic model learned
challenge for traditional regression. Tageigal.[18] first pro-  from the observed data.
posed minimizing over free parameters the difference be- We conclude by reminding the reader that stationarity is a
tween an observed distribution of symbol words and thaproperty of themodeldeemed useful for the dataset. As a
produced by discretizing some proposed model’'s outputtesult, any test for stationarity or time-invariance depends on
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FIG. 5. Nonstationary fluidized bed results with air flow altered
at the 50% mark. Plotted statistit as a function of hypothesized FIG. 6. Three month moving average of the southern oscillation
breakpoint in time series and symbolic alphabet precision. Result&dex, the normalized pressure difference between Tahiti and Dar-
for |A|>2 numerically underflowed t€=0 toward the center and win, Australia. Strongly negative values correspond to ETdNin
are not plotted. Null hypothesis emphatically rejected due to thesvents. It is debated whether the extended negative period from mid
very small values of. 1990 through 1995 is especially anomalous.
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the appropriateness of the hypothesized model applied to tHearned by the context. Note that altering the alphabet or
data. In our case, the symbolic methods are closely related symbolization parameters will change the no-memory en-
universal data compression algorithmi20]. The perfor- tropy as well, thus the compression ratio of compressed bits
mance on finite-length sequences will, of course, depend oper symbol vs no-memory bits per symbol is the optimiza-

a good representation such that the predictabilility of thetion target. . o

future symbol is best determined by the first context symbol, If one is interested in the stationarity of some narrow

next best by the second context symbol, etc. If the metho@SPects or of exclusively rare events in the data, our sort of

has to descend many symbols to find a useful predicting&neral compression model might not be appropriate and

context, power will be lost. Because the predictive COdecpuld give misleading results or low statistical power. In

length is a “fair’ minimum description length measure, one simulation and experiment, however, the present method is

can optimize over reconstruction parameferg., time delay grslgl;uleand sensitive to many sorts of parametric drift or
or symbolization breakpointgo find the lowest code length, ge.
at which point the maximum serial dependence has been We thank members of INLS and CADO for discussions.
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